Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.367
Filtrar
1.
Opt Lett ; 49(8): 2121-2124, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621091

RESUMO

The purpose of this study is to verify the effect of anisotropic property of retinal biomechanics on vasodilation measurement. A custom-built optical coherence tomography (OCT) was used for time-lapse imaging of flicker stimulation-evoked vessel lumen changes in mouse retinas. A comparative analysis revealed significantly larger (18.21%) lumen dilation in the axial direction compared to the lateral (10.77%) direction. The axial lumen dilation predominantly resulted from the top vessel wall movement toward the vitreous direction, whereas the bottom vessel wall remained stable. This observation indicates that the traditional vasodilation measurement in the lateral direction may result in an underestimated value.


Assuntos
Tomografia de Coerência Óptica , Vasodilatação , Animais , Camundongos , Vasodilatação/fisiologia , Tomografia de Coerência Óptica/métodos , Estimulação Luminosa/métodos , Retina/diagnóstico por imagem , Retina/fisiologia , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/fisiologia
2.
Acta Neurobiol Exp (Wars) ; 84(1): 1-25, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587328

RESUMO

We employed intrinsic signal optical imaging (ISOI) to investigate orientation sensitivity bias in the visual cortex of young mice. Optical signals were recorded in response to the moving light gratings stimulating ipsi­, contra­ and binocular eye inputs. ISOI allowed visualization of cortical areas activated by gratings of specific orientation and temporal changes of light scatter during visual stimulation. These results confirmed ISOI as a reliable technique for imaging the activity of large populations of neurons in the mouse visual cortex. Our results revealed that the contralateral ocular input activated a larger area of the primary visual cortex than the ipsilateral input, and caused the highest response amplitudes of light scatter signals to all ocular inputs. Horizontal gratings moved in vertical orientation induced the most significant changes in light scatter when presented contralaterally and binocularly, surpassing stimulations by vertical or oblique gratings. These observations suggest dedicated integration mechanisms for the combined inputs from both eyes. We also explored the relationship between point luminance change (PLC) of grating stimuli and ISOI time courses under various orientations of movements of the gratings and ocular inputs, finding higher cross-correlation values for cardinal orientations and ipsilateral inputs. These findings suggested specific activation of different neuronal assemblies within the mouse's primary visual cortex by grating stimuli of the corresponding orientation. However, further investigations are needed to examine this summation hypothesis. Our study highlights the potential of optical imaging as a valuable tool for exploring functional­anatomical relationships in the mouse visual system.


Assuntos
Córtex Visual Primário , Córtex Visual , Animais , Camundongos , Neurônios , Imagem Óptica , Córtex Visual/fisiologia , Estimulação Luminosa/métodos
3.
Proc Natl Acad Sci U S A ; 121(16): e2309975121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588433

RESUMO

Research on attentional selection of stimulus features has yielded seemingly contradictory results. On the one hand, many experiments in humans and animals have observed a "global" facilitation of attended features across the entire visual field, even when spatial attention is focused on a single location. On the other hand, several event-related potential studies in humans reported that attended features are enhanced at the attended location only. The present experiment demonstrates that these conflicting results can be explained by differences in the timing of attentional allocation inside and outside the spatial focus of attention. Participants attended to fields of either red or blue randomly moving dots on either the left or right side of fixation with the task of detecting brief coherent motion targets. Recordings of steady-state visual evoked potentials elicited by the flickering stimuli allowed concurrent measurement of the time course of feature-selective attention in visual cortex on both the attended and the unattended sides. The onset of feature-selective attentional modulation on the attended side occurred around 150 ms earlier than on the unattended side. This finding that feature-selective attention is not spatially global from the outset but extends to unattended locations after a temporal delay resolves previous contradictions between studies finding global versus hierarchical selection of features and provides insight into the fundamental relationship between feature-based and location-based (spatial) attention mechanisms.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados , Campos Visuais , Atenção , Estimulação Luminosa/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38598403

RESUMO

Steady-state visual evoked potential (SSVEP), one of the most popular electroencephalography (EEG)-based brain-computer interface (BCI) paradigms, can achieve high performance using calibration-based recognition algorithms. As calibration-based recognition algorithms are time-consuming to collect calibration data, the least-squares transformation (LST) has been used to reduce the calibration effort for SSVEP-based BCI. However, the transformation matrices constructed by current LST methods are not precise enough, resulting in large differences between the transformed data and the real data of the target subject. This ultimately leads to the constructed spatial filters and reference templates not being effective enough. To address these issues, this paper proposes multi-stimulus LST with online adaptation scheme (ms-LST-OA). METHODS: The proposed ms-LST-OA consists of two parts. Firstly, to improve the precision of the transformation matrices, we propose the multi-stimulus LST (ms-LST) using cross-stimulus learning scheme as the cross-subject data transformation method. The ms-LST uses the data from neighboring stimuli to construct a higher precision transformation matrix for each stimulus to reduce the differences between transformed data and real data. Secondly, to further optimize the constructed spatial filters and reference templates, we use an online adaptation scheme to learn more features of the EEG signals of the target subject through an iterative process trial-by-trial. RESULTS: ms-LST-OA performance was measured for three datasets (Benchmark Dataset, BETA Dataset, and UCSD Dataset). Using few calibration data, the ITR of ms-LST-OA achieved 210.01±10.10 bits/min, 172.31±7.26 bits/min, and 139.04±14.90 bits/min for all three datasets, respectively. CONCLUSION: Using ms-LST-OA can reduce calibration effort for SSVEP-based BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Calibragem , Estimulação Luminosa/métodos , Eletroencefalografia/métodos , Algoritmos
5.
Elife ; 132024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629828

RESUMO

The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel 'shadow' was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.


Assuntos
Encéfalo , Cerebelo , Camundongos , Animais , Cerebelo/fisiologia , Nistagmo Optocinético , Neurônios , Aprendizagem , Estimulação Luminosa/métodos
6.
Nat Commun ; 15(1): 3116, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600132

RESUMO

Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.


Assuntos
Córtex Auditivo , Localização de Som , Córtex Visual , Percepção Visual/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Estimulação Acústica/métodos
7.
J Vis ; 24(4): 3, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558158

RESUMO

The sudden onset of a visual object or event elicits an inhibition of eye movements at latencies approaching the minimum delay of visuomotor conductance in the brain. Typically, information presented via multiple sensory modalities, such as sound and vision, evokes stronger and more robust responses than unisensory information. Whether and how multisensory information affects ultra-short latency oculomotor inhibition is unknown. In two experiments, we investigate smooth pursuit and saccadic inhibition in response to multisensory distractors. Observers tracked a horizontally moving dot and were interrupted by an unpredictable visual, auditory, or audiovisual distractor. Distractors elicited a transient inhibition of pursuit eye velocity and catch-up saccade rate within ∼100 ms of their onset. Audiovisual distractors evoked stronger oculomotor inhibition than visual- or auditory-only distractors, indicating multisensory response enhancement. Multisensory response enhancement magnitudes were equal to the linear sum of responses to component stimuli. These results demonstrate that multisensory information affects eye movements even at ultra-short latencies, establishing a lower time boundary for multisensory-guided behavior. We conclude that oculomotor circuits must have privileged access to sensory information from multiple modalities, presumably via a fast, subcortical pathway.


Assuntos
Encéfalo , Acompanhamento Ocular Uniforme , Humanos , Tempo de Reação/fisiologia , Encéfalo/fisiologia , Movimentos Sacádicos , Memória , Estimulação Luminosa/métodos
8.
Cogn Res Princ Implic ; 9(1): 17, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530617

RESUMO

Previous work has demonstrated similarities and differences between aerial and terrestrial image viewing. Aerial scene categorization, a pivotal visual processing task for gathering geoinformation, heavily depends on rotation-invariant information. Aerial image-centered research has revealed effects of low-level features on performance of various aerial image interpretation tasks. However, there are fewer studies of viewing behavior for aerial scene categorization and of higher-level factors that might influence that categorization. In this paper, experienced subjects' eye movements were recorded while they were asked to categorize aerial scenes. A typical viewing center bias was observed. Eye movement patterns varied among categories. We explored the relationship of nine image statistics to observers' eye movements. Results showed that if the images were less homogeneous, and/or if they contained fewer or no salient diagnostic objects, viewing behavior became more exploratory. Higher- and object-level image statistics were predictive at both the image and scene category levels. Scanpaths were generally organized and small differences in scanpath randomness could be roughly captured by critical object saliency. Participants tended to fixate on critical objects. Image statistics included in this study showed rotational invariance. The results supported our hypothesis that the availability of diagnostic objects strongly influences eye movements in this task. In addition, this study provides supporting evidence for Loschky et al.'s (Journal of Vision, 15(6), 11, 2015) speculation that aerial scenes are categorized on the basis of image parts and individual objects. The findings were discussed in relation to theories of scene perception and their implications for automation development.


Assuntos
Movimentos Oculares , Percepção Visual , Humanos , Estimulação Luminosa/métodos , Automação , Registros
9.
Artigo em Inglês | MEDLINE | ID: mdl-38517720

RESUMO

Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have emerged as a prominent technology due to their high information transfer rate, rapid calibration time, and robust signal-to-noise ratio. However, a critical challenge for practical applications is performance degradation caused by user fatigue during prolonged use. This work proposes novel methods to address this challenge by dynamically adjusting data acquisition length and updating detection models based on a fatigue-aware stopping strategy. Two 16-target SSVEP-BCIs were employed, one using low-frequency and the other using high-frequency stimulation. A self-recorded fatigue dataset from 24 subjects was utilized for extensive evaluation. A simulated online experiment demonstrated that the proposed methods outperform the conventional fixed stopping strategy in terms of classification accuracy, information transfer rate, and selection time, irrespective of stimulation frequency. These findings suggest that the proposed approach can significantly improve SSVEP-BCI performance under fatigue conditions, leading to superior performance during extended use.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Potenciais Evocados Visuais , Estimulação Luminosa/métodos , Fadiga , Algoritmos
10.
Cortex ; 173: 339-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479348

RESUMO

Studies using frequency-tagging in electroencephalography (EEG) have dramatically increased in the past 10 years, in a variety of domains and populations. Here we used Fast Periodic Visual Stimulation (FPVS) combined with an oddball design to explore visual word recognition. Given the paradigm's high sensitivity, it is crucial for future basic research and clinical application to prove its robustness across variations of designs, stimulus types and tasks. This paradigm uses periodicity of brain responses to measure discrimination between two experimentally defined categories of stimuli presented periodically. EEG was recorded in 22 adults who viewed words inserted every 5 stimuli (at 2 Hz) within base stimuli presented at 10 Hz. Using two discrimination levels (deviant words among nonwords or pseudowords), we assessed the impact of relative frequency of item repetition (set size or item repetition controlled for deviant versus base stimuli), and of the orthogonal task (focused or deployed spatial attention). Word-selective occipito-temporal responses were robust at the individual level (significant in 95% of participants), left-lateralized, larger for the prelexical (nonwords) than lexical (pseudowords) contrast, and stronger with a deployed spatial attention task as compared to the typically used focused task. Importantly, amplitudes were not affected by item repetition. These results help understanding the factors influencing word-selective EEG responses and support the validity of FPVS-EEG oddball paradigms, as they confirm that word-selective responses are linguistic. Second, they show its robustness against design-related factors that could induce statistical (ir)regularities in item rate. They also confirm its high individual sensitivity and demonstrate how it can be optimized, using a deployed rather than focused attention task, to measure implicit word recognition processes in typical and atypical populations.


Assuntos
Encéfalo , Eletroencefalografia , Adulto , Humanos , Estimulação Luminosa/métodos , Encéfalo/fisiologia , Atenção , Linguística
11.
J Neurophysiol ; 131(4): 709-722, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478896

RESUMO

Neurons in sensory and motor cortices tend to aggregate in clusters with similar functional properties. Within the primate dorsal ("where") pathway, an important interface between three-dimensional (3-D) visual processing and motor-related functions consists of two hierarchically organized areas: V3A and the caudal intraparietal (CIP) area. In these areas, 3-D visual information, choice-related activity, and saccade-related activity converge, often at the single-neuron level. Characterizing the clustering of functional properties in areas with mixed selectivity, such as these, may help reveal organizational principles that support sensorimotor transformations. Here we quantified the clustering of visual feature selectivity, choice-related activity, and saccade-related activity by performing correlational and parametric comparisons of the responses of well-isolated, simultaneously recorded neurons in macaque monkeys. Each functional domain showed statistically significant clustering in both areas. However, there were also domain-specific differences in the strength of clustering across the areas. Visual feature selectivity and saccade-related activity were more strongly clustered in V3A than in CIP. In contrast, choice-related activity was more strongly clustered in CIP than in V3A. These differences in clustering may reflect the areas' roles in sensorimotor processing. Stronger clustering of visual and saccade-related activity in V3A may reflect a greater role in within-domain processing, as opposed to cross-domain synthesis. In contrast, stronger clustering of choice-related activity in CIP may reflect a greater role in synthesizing information across functional domains to bridge perception and action.NEW & NOTEWORTHY The occipital and parietal cortices of macaque monkeys are bridged by hierarchically organized areas V3A and CIP. These areas support 3-D visual transformations, carry choice-related activity during 3-D perceptual tasks, and possess saccade-related activity. This study quantifies the functional clustering of neuronal response properties within V3A and CIP for each of these domains. The findings reveal domain-specific cross-area differences in clustering that may reflect the areas' roles in sensorimotor processing.


Assuntos
Movimentos Sacádicos , Percepção Visual , Animais , Macaca mulatta , Percepção Visual/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos
12.
Elife ; 122024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478405

RESUMO

Previous research has found that prolonged eye-based attention can bias ocular dominance. If one eye long-termly views a regular movie meanwhile the opposite eye views a backward movie of the same episode, perceptual ocular dominance will shift towards the eye previously viewing the backward movie. Yet it remains unclear whether the role of eye-based attention in this phenomenon is causal or not. To address this issue, the present study relied on both the functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) techniques. We found robust activation of the frontal eye field (FEF) and intraparietal sulcus (IPS) when participants were watching the dichoptic movie while focusing their attention on the regular movie. Interestingly, we found a robust effect of attention-induced ocular dominance shift when the cortical function of vertex or IPS was transiently inhibited by continuous theta burst stimulation (cTBS), yet the effect was significantly attenuated to a negligible extent when cTBS was delivered to FEF. A control experiment verified that the attenuation of ocular dominance shift after inhibitory stimulation of FEF was not due to any impact of the cTBS on the binocular rivalry measurement of ocular dominance. These findings suggest that the fronto-parietal attentional network is involved in controlling eye-based attention in the 'dichoptic-backward-movie' adaptation paradigm, and in this network, FEF plays a crucial causal role in generating the attention-induced ocular dominance shift.


Assuntos
Dominância Ocular , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Atenção/fisiologia , Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Estimulação Luminosa/métodos
13.
Biomed Phys Eng Express ; 10(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38430561

RESUMO

Hybrid Brain-Computer Interface (hBCI) combines multiple neurophysiology modalities or paradigms to speed up the output of a single command or produce multiple ones simultaneously. Concurrent hBCIs that employ endogenous and exogenous paradigms are limited by the reduced set of possible commands. Conversely, the fusion of different exogenous visual evoked potentials demonstrated impressive performances; however, they suffer from limited portability. Yet, sequential hBCIs did not receive much attention mainly due to slower transfer rate and user fatigue during prolonged BCI use (Lorenz et al 2014 J. Neural Eng. 11 035007). Moreover, the crucial factors for optimizing the hybridization remain under-explored. In this paper, we test the feasibility of sequential Event Related-Potentials (ERP) and Steady-State Visual Evoked Potentials (SSVEP) hBCI and study the effect of stimulus order presentation between ERP-SSVEP and SSVEP-ERP for the control of directions and speed of powered wheelchairs or mobile robots with 15 commands. Exploiting the fast single trial face stimulus ERP, SSVEP and modern efficient convolutional neural networks, the configuration with SSVEP presented at first achieved significantly (p < 0.05) higher average accuracy rate with 76.39% ( ± 7.30 standard deviation) hybrid command accuracy and an average Information Transfer Rate (ITR) of 25.05 ( ± 5.32 standard deviation) bits per minute (bpm). The results of the study demonstrate the suitability of a sequential SSVEP-ERP hBCI with challenging dry electroencephalography (EEG) electrodes and low-compute capacity. Although it presents lower ITR than concurrent hBCIs, our system presents an alternative in small screen settings when the conditions for concurrent hBCIs are difficult to satisfy.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Estimulação Luminosa/métodos , Potenciais Evocados , Eletroencefalografia/métodos
14.
Curr Biol ; 34(5): R195-R197, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471446

RESUMO

The representation of visual shape is a critical component of our perception of the objects around us. A new study exploited shape aftereffects to reveal the high-dimensional space of geometric features our brains use to represent shape.


Assuntos
Percepção de Forma , Percepção Visual , Estimulação Luminosa/métodos , Visão Ocular , Reconhecimento Visual de Modelos
15.
Nat Commun ; 15(1): 2466, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503746

RESUMO

How the activity of neurons gives rise to natural vision remains a matter of intense investigation. The mid-level visual areas along the ventral stream are selective to a common class of natural images-textures-but a circuit-level understanding of this selectivity and its link to perception remains unclear. We addressed these questions in mice, first showing that they can perceptually discriminate between textures and statistically simpler spectrally matched stimuli, and between texture types. Then, at the neural level, we found that the secondary visual area (LM) exhibited a higher degree of selectivity for textures compared to the primary visual area (V1). Furthermore, textures were represented in distinct neural activity subspaces whose relative distances were found to correlate with the statistical similarity of the images and the mice's ability to discriminate between them. Notably, these dependencies were more pronounced in LM, where the texture-related subspaces were smaller than in V1, resulting in superior stimulus decoding capabilities. Together, our results demonstrate texture vision in mice, finding a linking framework between stimulus statistics, neural representations, and perceptual sensitivity-a distinct hallmark of efficient coding computations.


Assuntos
Córtex Visual , Vias Visuais , Animais , Camundongos , Estimulação Luminosa/métodos , Vias Visuais/fisiologia , Córtex Visual/fisiologia , Neurônios/fisiologia , Percepção Visual/fisiologia
16.
Nat Commun ; 15(1): 2456, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503769

RESUMO

The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.


Assuntos
Córtex Visual , Animais , Camundongos , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Neurônios/fisiologia
17.
Hum Brain Mapp ; 45(4): e26653, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488460

RESUMO

Face-to-face communication relies on the integration of acoustic speech signals with the corresponding facial articulations. In the McGurk illusion, an auditory /ba/ phoneme presented simultaneously with a facial articulation of a /ga/ (i.e., viseme), is typically fused into an illusory 'da' percept. Despite its widespread use as an index of audiovisual speech integration, critics argue that it arises from perceptual processes that differ categorically from natural speech recognition. Conversely, Bayesian theoretical frameworks suggest that both the illusory McGurk and the veridical audiovisual congruent speech percepts result from probabilistic inference based on noisy sensory signals. According to these models, the inter-sensory conflict in McGurk stimuli may only increase observers' perceptual uncertainty. This functional magnetic resonance imaging (fMRI) study presented participants (20 male and 24 female) with audiovisual congruent, McGurk (i.e., auditory /ba/ + visual /ga/), and incongruent (i.e., auditory /ga/ + visual /ba/) stimuli along with their unisensory counterparts in a syllable categorization task. Behaviorally, observers' response entropy was greater for McGurk compared to congruent audiovisual stimuli. At the neural level, McGurk stimuli increased activations in a widespread neural system, extending from the inferior frontal sulci (IFS) to the pre-supplementary motor area (pre-SMA) and insulae, typically involved in cognitive control processes. Crucially, in line with Bayesian theories these activation increases were fully accounted for by observers' perceptual uncertainty as measured by their response entropy. Our findings suggest that McGurk and congruent speech processing rely on shared neural mechanisms, thereby supporting the McGurk illusion as a valid measure of natural audiovisual speech perception.


Assuntos
Ilusões , Percepção da Fala , Humanos , Masculino , Feminino , Percepção Auditiva/fisiologia , Fala/fisiologia , Ilusões/fisiologia , Percepção Visual/fisiologia , Teorema de Bayes , Incerteza , Percepção da Fala/fisiologia , Estimulação Acústica/métodos , Estimulação Luminosa/métodos
18.
Curr Biol ; 34(6): R235-R236, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531313

RESUMO

An important task for the visual system is to identify and segregate objects from background. Figure-ground illusions, such as Edgar Rubin's bistable 'vase-faces illusion'1, make the point clearly: we see either a central vase or lateral faces, alternating spontaneously, but never both images simultaneously. The border is perceptually assigned to either faces or vase, which become figure, the other shapeless background2. The stochastic alternation between figure and ground probably reflects mutual inhibitory processes that ensure a single perceptual outcome3. Which shape dominates perception depends on many factors, such as size, symmetry, convexity, enclosure, and so on, as well as attention and intention4. Here we show that the assignment of the visual border can be strongly influenced by auditory input, far more than is possible by voluntary intention. VIDEO ABSTRACT.


Assuntos
Ilusões , Reconhecimento Visual de Modelos , Humanos , Estimulação Luminosa/métodos , Atenção , Face
19.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494889

RESUMO

A recent neuroimaging study in adults found that the occipital place area (OPA)-a cortical region involved in "visually guided navigation" (i.e. moving about the immediately visible environment, avoiding boundaries, and obstacles)-represents visual information about walking, not crawling, suggesting that OPA is late developing, emerging only when children are walking, not beforehand. But when precisely does this "walking selectivity" in OPA emerge-when children first begin to walk in early childhood, or perhaps counterintuitively, much later in childhood, around 8 years of age, when children are adult-like walking? To directly test these two hypotheses, using functional magnetic resonance imaging (fMRI) in two groups of children, 5- and 8-year-olds, we measured the responses in OPA to first-person perspective videos through scenes from a "walking" perspective, as well as three control perspectives ("crawling," "flying," and "scrambled"). We found that the OPA in 8-year-olds-like adults-exhibited walking selectivity (i.e. responding significantly more to the walking videos than to any of the others, and no significant differences across the crawling, flying, and scrambled videos), while the OPA in 5-year-olds exhibited no walking selectively. These findings reveal that OPA undergoes protracted development, with walking selectivity only emerging around 8 years of age.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Criança , Pré-Escolar , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Estimulação Luminosa/métodos , Caminhada
20.
Artigo em Inglês | MEDLINE | ID: mdl-38437148

RESUMO

In steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems, traditional flickering stimulation patterns face challenges in achieving a trade-off in both BCI performance and visual comfort across various frequency bands. To investigate the optimal stimulation paradigms with high performance and high comfort for each frequency band, this study systematically compared the characteristics of SSVEP and user experience of different stimulation paradigms with a wide stimulation frequency range of 1-60 Hz. The findings suggest that, for a better balance between system performance and user experience, ON and OFF grid stimuli with a Weber contrast of 50% can be utilized as alternatives to traditional flickering stimulation paradigms in the frequency band of 1-25 Hz. In the 25-35 Hz range, uniform flicker stimuli with the same 50% contrast are more suitable. In the higher frequency band, traditional uniform flicker stimuli with a high 300% contrast are preferred. These results are significant for developing high performance and user-friendly SSVEP-based BCI systems.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa/métodos , Eletroencefalografia/métodos , Sistemas Computacionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...